

Minimal requirement for the course EE-511

1- Electrical circuits

- a. Be able to solve an electrical circuit with
 - i. Kirchhoff's law, nodal and mesh analysis
 - ii. Thevenin's theorem and Norton's theorem
 - iii. Superposition

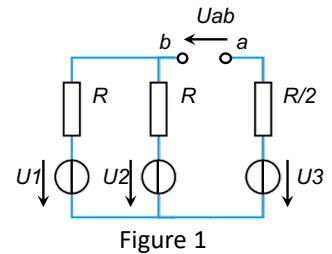


Figure 1

For example in figure 1, you should be able to show with each rule i, ii or iii, that:

$$U_{ab} = U_3 - \frac{U_1 + U_2}{2}$$

- b. Be able to solve bridge circuit such as Wheatstone bridge

For example be able to determine $u_o = \frac{R_2 R_3 - R_1 R_4}{(R_1 + R_2) \cdot (R_3 + R_4)} u$ in the circuit of figure 2.

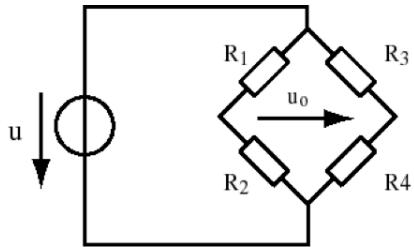


Figure 2

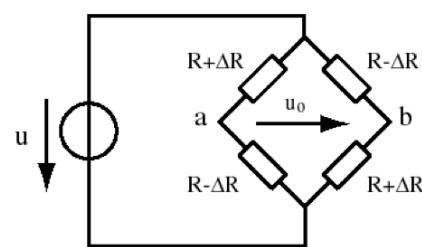
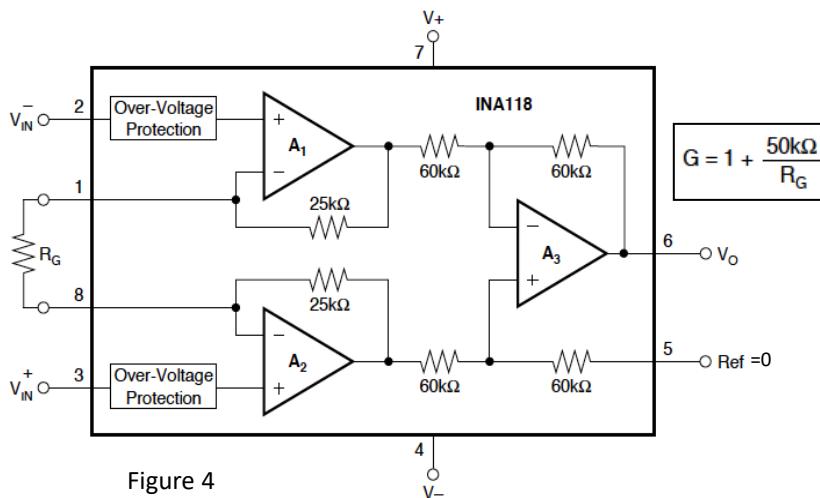


Figure 3


Or full bridge of figure 3 as $u_o = -\frac{\Delta R}{R} u$.

Or in quarter bridge $|u_o| = \frac{\Delta R}{4R} u$, half bridge $|u_o| = \frac{\Delta R}{2R} u$

- c. Be able to solve circuit with operational amplifiers

- i. Non-inverting amplifier
- ii. Inverting amplifier
- iii. Unity-gain buffer amplifier
- iv. Differential amplifier
- v. Summing amplifier
- vi. Other basic circuit with amplifier

For example you should be able to find the gain (G) of the circuit of figure 4:

2) Static and dynamic characteristics of systems

- zero, first and second order system
- Laplace transformation
- Transfer function determination
- resonant frequency, damping
- bode plot

3) Basic Physical laws

- Faraday law, transformer effect
- Fluid dynamics: laminar vs turbulent flow, Bernouli law
- Mechanics: stress, strength, Coriolis force
- Doppler effect
- Light transmission